Amsterdam, NL, February 10, 2021 – Neuroplasticity, the remarkable ability of the brain to modify and reorganize itself, is affected by or in response to excessive alcohol, whether through individual consumption or exposure in the womb. It is now well accepted that the birth and integration of new neurons continue beyond development and into adulthood. New discoveries and insights on how alcohol impacts this and other plastic processes are discussed in “Alcohol and Neural Plasticity,” a special issue of Brain Plasticity.

Neural plasticity, the remarkable ability of the brain to modify and reorganize itself at the synapse, circuit and cellular levels is affected by and/or in response to excessive alcohol intake or exposure. Outcomes of alcohol use on either neural or developmental plasticity impact executive functions, motor control, cognition and learning and memory.
CREDIT
Steven P. Guerin
“The discovery and evolution of our acceptance of the role of adult neurogenesis in brain structure and function have revolutionized our understanding of the brain’s response to insult, but has also introduced a potential mechanism of recovery in some regions,” explains Guest Editor Kimberly Nixon, PhD, The University of Texas at Austin, College of Pharmacy, Austin, TX, USA.
In models of Fetal Alcohol Spectrum Disorder, earlier research found that gestational exposure to moderate levels of alcohol in mice throughout a period equivalent to the first and second human trimesters profoundly impacted neurogenesis. In a follow up study published in this special issue, lead investigator Lee Anna Cunningham, PhD, Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA, and colleagues examined the functional and structural consequences of prenatal alcohol exposure on adult-generated neurons. They found no direct effects of prenatal alcohol exposure on adult hippocampal neurogenesis in mice housed under standard conditions, but prenatal alcohol exposure impaired the neurogenic response to enriched environment. These mice also performed poorly in a neurogenesis-dependent pattern discrimination task and displayed impaired enrichment-mediated increases in dendrite complexity.
“This study further underscores the impact of moderate gestational alcohol exposure on adult hippocampal plasticity and supports adult hippocampal neurogenesis as a potential therapeutic target to remediate certain neurological outcomes in fetal alcohol syndrome,” notes Dr. Cunningham.
Click here to read the full article.
Retrieved from https://www.eurekalert.org/pub_releases/2021-02/ip-anm021021.php
Disclaimer: The views and opinions expressed in this article are those of the authors and do not
necessarily reflect the official policy or position of the ‘FASD Prevention Conversation, A Shared Responsibility’ Project, its stakeholders, and/or funders.